4,088 research outputs found

    Interacting branes, dual branes, and dyonic branes: a unifying lagrangian approach in D dimensions

    Get PDF
    This paper presents a general covariant lagrangian framework for the dynamics of a system of closed n-branes and dual (D-n-4)-branes in D dimensions, interacting with a dynamical (n+1)-form gauge potential. The framework proves sufficiently general to include also a coupling of the branes to (the bosonic sector of) a dynamical supergravity theory. We provide a manifestly Lorentz-invariant and S-duality symmetric Lagrangian, involving the (n+1)-form gauge potential and its dual (D-n-3)-form gauge potential in a symmetric way. The corresponding action depends on generalized Dirac-strings. The requirement of string-independence of the action leads to Dirac-Schwinger quantization conditions for the charges of branes and dual branes, but produces also additional constraints on the possible interactions. It turns out that a system of interacting dyonic branes admits two quantum mechanically inequivalent formulations, involving inequivalent quantization conditions. Asymmetric formulations involving only a single vector potential are also given. For the special cases of dyonic branes in even dimensions known results are easily recovered. As a relevant application of the method we write an effective action which implements the inflow anomaly cancellation mechanism for interacting heterotic strings and five-branes in D=10. A consistent realization of this mechanism requires, in fact, dynamical p-form potentials and a systematic introduction of Dirac-strings.Comment: 36 pages, LaTeX, no figure

    Spin-statistics transmutation in relativistic quantum field theories of dyons

    Get PDF
    We analyse spin and statistics of quantum dyon fields, i.e. fields carrying both electric and magnetic charge, in 3+1 space-time dimensions. It has been shown long time ago that, at the quantum mechanical level, a composite dyon made out of a magnetic pole of charge g and a particle of electric charge e possesses half-integral spin and fermionic statistics, if the constituents are bosons and the Dirac quantization condition eg=2Ď€neg=2\pi n holds, with n odd. This phenomenon is called spin-statistics transmutation. We show that the same phenomenon occurs at the quantum field theory level for an elementary dyon. This analysis requires the construction of gauge invariant charged dyon fields. Dirac's proposal for such fields, relying on a Coulomb-like photon cloud, leads to quantum correlators exhibiting an unphysical dependence on the Dirac-string. Recently Froehlich and Marchetti proposed a recipe for charged dyon fields, based on a sum over Mandelstam-strings, which overcomes this problem. Using this recipe we derive explicit expressions for the quantum field theory correlators and we provide a proof of the occurrence of spin-statistics transmutation. The proof reduces to a computation of the self-linking numbers of dyon worldlines and Mandelstam strings, projected on a fixed time three-space. Dyon composites are also analysed. The transmutation discussed in this paper bares some analogy with the appearance of anomalous spin and statistics for particles or vortices in Chern-Simons theories in 2+1 dimensions. However, peculiar features appear in 3+1 dimensions e.g. in the spin addition rule.Comment: 32 pages, LaTeX, no figure

    A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    Full text link
    The need to carry out analytical studies of wireless systems often motivates the usage of simplified models which, despite their tractability, can easily lead to an overestimation of the achievable performance. In the case of dense small cells networks, the standard single slope path-loss model has been shown to provide interesting, but supposedly too optimistic, properties such as the invariance of the outage/coverage probability and of the spectral efficiency to the base station density. This paper seeks to explore the performance of dense small cells networks when a more accurate path-loss model is taken into account. We first propose a stochastic geometry based framework for small cell networks where the signal propagation accounts for both the Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) components, such as the model provided by the 3GPP for evaluation of pico-cells in Heterogeneous Networks. We then study the performance of these networks and we show the dependency of some metrics such as the outage/coverage probability, the spectral efficiency and Area Spectral Efficiency (ASE) on the base station density and on the LOS likelihood of the propagation environment. Specifically, we show that, with LOS/NLOS propagation, dense networks still achieve large ASE gain but, at the same time, suffer from high outage probability.Comment: Typo corrected in eq. (3); Typo corrected in legend of Fig. 1-2; Typos corrected and definitions of some variables added in Section III.E; Final result unchanged; Paper accepted to IEEE ICC 201

    ILP-based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors

    Get PDF
    The problem of partitioning systems of independent constrained-deadline sporadic tasks upon heterogeneous multiprocessor platforms is considered. Several different integer linear program (ILP) formulations of this problem, offering different tradeoffs between effectiveness (as quantified by speedup bound) and running time efficiency, are presented

    Spontaneous rotating vortex rings in a parametrically driven polariton fluid

    Full text link
    We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.Comment: 6 pages, 4 figure

    Substrate rigidity deforms and polarizes active gels

    Get PDF
    We present a continuum model of the coupling between cells and substrate that accounts for some of the observed substrate-stiffness dependence of cell properties. The cell is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the coupling to the substrate yields spatially inhomogeneous contractile stresses and deformations in the cell and can enhance polarization, breaking the cell's front-rear symmetry.Comment: 6 pages, 4 figures, EPL forma

    Unlocking the deployment of spectrum sharing with a policy enforcement framework

    Get PDF
    Spectrum sharing has been proposed as a promising way to increase the efficiency of spectrum usage by allowing incumbent operators (IOs) to share their allocated radio resources with licensee operators (LOs), under a set of agreed rules. The goal is to maximize a common utility, such as the sum rate throughput, while maintaining the level of service required by the IOs. However, this is only guaranteed under the assumption that all “players”respect the agreed sharing rules. In this paper, we propose a comprehensive framework for licensed shared access (LSA) networks that discourages LO misbehavior. Our framework is built around three core functions: misbehavior detection via the employment of a dedicated sensing network; a penalization function; and, a behavior-driven resource allocation. To the best of our knowledge, this is the first time that these components are combined for the monitoring/policing of the spectrum under the LSA framework. Moreover, a novel simulator for LSA is provided as an open access tool, serving the purpose of testing and validating our proposed techniques via a set of extensive system-level simulations in the context of mobile network operators, where IOs and several competing LOs are considered. The results demonstrate that violation of the agreed sharing rules can lead to a great loss of resources for the misbehaving LOs, the amount of which is controlled by the system. Finally, we promote that including a policy enforcement function as part of the spectrum sharing system can be beneficial for the LSA system, since it can guarantee compliance with the spectrum sharing rules and limit the short-term benefits arising from misbehavior

    Critical Hysteresis in Random Field XY and Heisenberg Models

    Full text link
    We study zero-temperature hysteresis in random-field XY and Heisenberg models in the zero-frequency limit of a cyclic driving field. We consider three distributions of the random field and present exact solutions in the mean field limit. The results show a strong effect of the form of disorder on critical hysteresis as well as the shape of hysteresis loops. A discrepancy with an earlier study based on the renormalization group is resolved.Comment: 10 pages, 6 figures; this is published version (added some text and references

    Bridging the microscopic and the hydrodynamic in active filament solutions

    Get PDF
    Hydrodynamic equations for an isotropic solution of active polar filaments are derived from a microscopic mean-field model of the forces exchanged between motors and filaments. We find that a spatial dependence of the motor stepping rate along the filament is essential to drive bundle formation. A number of differences arise as compared to hydrodynamics derived (earlier) from a mesoscopic model where relative filament velocities were obtained on the basis of symmetry considerations. Due to the anisotropy of filament diffusion, motors are capable of generating net filament motion relative to the solvent. The effect of this new term on the stability of the homogeneous state is investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let
    • …
    corecore